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The nonconforming voxel finite element method (NVFEM) avoids many of the difficulties of traditional finite element mesh 
generation by using a nested grid of rectangular elements. It models arbitrary boundary shapes by adaptively refining the mesh at the 
boundaries. Here the adaption is extended to reduce errors arising from elements that are away from boundaries, but are too big to 
represent the field adequately. The application is to 2D edge elements for solving the time-harmonic wave equation. Results for a miter-
bend waveguide problem demonstrate the effectiveness of the new algorithm. 
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I. INTRODUCTION 

ESH GENERATION continues to be a challenging part 
of finite element (FE) analysis. It can be computationally 

intensive and, if not carefully done, it can lead to poor element 
shapes and ill-conditioned matrix equations. The 
nonconforming voxel finite element method (NVFEM) 
[1][2][3][4] provides an alternative to traditional mesh 
generation: only rectangular elements are used, but when these 
straddle material boundaries they are subdivided repeatedly in 
order to provide a better modeling of the boundary shape. This 
reduces the error in the FE solution and is a form of adaption 
that might be called “geometric”. However, error also comes 
from elements that do not straddle a boundary, but are simply 
too big to represent the field variation adequately. Reducing 
this error requires “field” adaption. In this paper we propose 
an NVFEM algorithm that combines both geometric and field 
adaption. 

II. ADAPTIVE ALGORITHM 

NVFEM can be applied to vector electromagnetics using 
edge elements [5][6]. Here we solve the vector wave equation, 
׏ ൈ ׏ ൈ ۳ ൌ ݇଴

ଶߝ௥۳, for the 2D phasor electric field ۳ at a 
specified free-space wavenumber, ݇଴, using rectangular edge 
elements with four unknowns, one per edge [6]. Dielectric 
materials may be present and on the outer boundaries the 
tangential part of ۳ is specified (e.g., as zero, in which case the 
boundary is a perfect electric conductor, PEC).  

The FE used is rectangular and has one unknown per edge. 
It enforces tangential continuity of ۳ between elements. The 
standard basis function for an ݔ-directed edge is uniform in ݔ 
and varies linearly in ݕ. When the element straddles a 
boundary, the standard basis functions are replaced by 
computed basis functions (CBFs) which take into account the 
boundary and provide substantially greater accuracy [6].  

Initially the geometry is placed in a rectangular box which 
is subdivided, coarsely, into ܯ ൈܯ elements. A geometric 
refinement, GR, is one pass through the mesh, subdividing 
each element that straddles a boundary into four equal 
elements. A field refinement, FR(ܲ), is a similar pass, 

subdividing the worst ܲ% of the elements as determined by an 
error indicator, discussed below. 

The algorithm attempts to reduce the total error in the 
solution systematically in such a way that, at whatever point it 
is terminated, neither form of refinement has been excessive in 
comparison with the other. Continuing too far with GRs when 
the geometric error is already below the field error is 
inefficient because it does little to reduce the overall solution 
error, and vice versa. 

The criterion for switching between GR and FR is based on 
the change in the FE functional, which is given by 

 

ܨ ൌ නሼሺ׏ ൈ ۳ሻଶ െ ݇଴
ଶߝ௥۳ଶሽ	dΩ
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 :௥ is the dielectric constant. The adaptive algorithm isߝ

 
0. Solve the FE problem with initial ܯ ൈܯ	 mesh.  

Set ܲ ൌ 25, ܳ	 ൌ 	ܦ ,20	 ൌ 	2. 
1. Repeat GR until the change in ܨ between two successive 

solves is less than ܳ%. 
2. Repeat FR(ܲ) until the change in ܨ between two 

successive solves is less than ܳ%. 
3. ܳ	 ൌ 	ܳ ⁄ܦ . 
4. If further refinement is needed and possible, go to 1. 

 
In principle the algorithm could run for ever. In practice 

step 4 has to provide for a means of stopping, e.g., when the 
results are accurate enough or the available computational 
resources are exhausted.  

The values of the parameters ܲ and ܳ and the divisor ܦ at 
step 3 are obviously somewhat arbitrary. They have been 
chosen based on numerical experiments. 

Of the many error indicators that have been proposed, we 
use an inexpensive one that measures the average electric and 
magnetic strength in the element, weighted by its area, ܣ: 
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۳௞ is the electric field at the midpoint of the ݇th edge, ۶௞ is 
the magnetic field at the midpoint of the ݇th edge and ߟ is the 
intirnsic impedance in the element. The reasoning behind (2) 
is that large elements with large fields have the biggest 
contribution to ܨ and are likely also to contribute most to the 
error in ܨ.  

III. NUMERICAL RESULTS 

In this section, we evaluate the performance of the new 
adaptive algorithm. For this purpose, we apply the method to 
the 90°, E-plane miter bend in a parallel plate waveguide 
illustrated in Fig. 1. The waveguide is filled with air and 
݇଴ ൌ 5	rads ∙ mିଵ. The Dirichlet boundary condition ܧ௧௔௡௚ ൌ
1	V ∙ mିଵ is imposed on the input surface on the left edge, 
corresponding to the fundamental TEM mode, and ܧ௧௔௡௚ ൌ 0	 
is imposed on the other 6 edges of the bend, representing the 
metal plates of the waveguide and a terminating short circuit.  

 

 
Fig. 1. Cross section of the miter bend. ܽ ൌ 1	m, ܾ ൌ 1.3	m, c ൌ 2.75	m 

 
The problem is solved in two ways. In the first method, we 

apply conventional CBF-NVFEM, i.e., geometric adaption 
only. We only refine those elements which straddle a 
boundary. This reduces the boundary approximation error, but 
field errors related to the elements which are away from 
boundaries cannot be reduced. In the second method, we 
combine geometry and field refinement by using the proposed 
new algorithm. Four of the meshes that arise during the 
adaption are shown in Fig. 2. It can be seen that the new 
algorithm can be started with a very coarse mesh (Fig. 2a). 
Notice also that it detects the field singularity around the inner 
corner of the bend and refines heavily there (Fig. 2d).  

The error in FE functional (1) during the adaption is shown 
in Fig. 3 for both methods, as a function of the number of 
degrees of freedom (DOFs) in the mesh. The reference 
solution was obtained with a conventional 3D FE code using a 
single layer of high order tetrahedral elements and it is 
estimated to be acurate to 0.01	%.  

It can be seen that the new method continues to reduce the 
error, while the conventional method stops reducing the error 
once the geometry is resolved sufficiently well; remaining 
field errors go uncorrected. Notice how the final accuracy of  
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Fig. 2. Meshes obtained for the miter bend waveguide using the new 
algorithm. 

 
the conventional method depends on the fineness of the initial 
mesh. 

 
 
Fig. 3. Error in the FE functional versus DOFs for the miter bend test case; 
conventional adaptive refinement compared to the new adaptive refinement. 
For the “new adaption” curve, squares indicate geometric refinement (GR) 
and circles indicate field refinement (FR).  
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